Difference between revisions of "Hermite (probabilist)"
From specialfunctionswiki
Line 3: | Line 3: | ||
$$H_n(t) = (-1)^ne^{x^2}\dfrac{d^n}{dx^n}e^{-x^2}.$$ | $$H_n(t) = (-1)^ne^{x^2}\dfrac{d^n}{dx^n}e^{-x^2}.$$ | ||
<div class="mw-collapsible-content"> | <div class="mw-collapsible-content"> | ||
− | <strong>Proof:</strong> | + | <strong>Proof:</strong> █ |
+ | </div> | ||
+ | </div> | ||
+ | |||
+ | <div class="toccolours mw-collapsible mw-collapsed" style="width:800px"> | ||
+ | <strong>Theorem:</strong> ([[Generating function]]) The Hermite polynomials obey | ||
+ | $$e^{2tx-t^2} = \displaystyle\sum_{k=0}^{\infty} \dfrac{H_k(x)t^n}{n!}.$$ | ||
+ | <div class="mw-collapsible-content"> | ||
+ | <strong>Proof:</strong> █ | ||
+ | </div> | ||
+ | </div> | ||
+ | |||
+ | <div class="toccolours mw-collapsible mw-collapsed" style="width:800px"> | ||
+ | <strong>Theorem:</strong> ([[Orthogonal |Orthogonality]]) The Hermite polynomials obey | ||
+ | $$\displaystyle\int_{-\infty}^{\infty} e^{-x^2}H_n(x)H_m(x)dx=\left\{ \begin{array}{ll} | ||
+ | 0 &; m \neq n \\ | ||
+ | 2^nn!\sqrt{\pi} &; m=n | ||
+ | \end{array} \right..$$ | ||
+ | <div class="mw-collapsible-content"> | ||
+ | <strong>Proof:</strong> █ | ||
+ | </div> | ||
+ | </div> | ||
+ | |||
+ | <div class="toccolours mw-collapsible mw-collapsed" style="width:800px"> | ||
+ | <strong>Theorem:</strong> $H_n(x)$ is an even function for even $n$ and an odd function for odd $n$. | ||
+ | <div class="mw-collapsible-content"> | ||
+ | <strong>Proof:</strong> █ | ||
</div> | </div> | ||
</div> | </div> |
Revision as of 01:34, 14 September 2014
Theorem: The Hermite polynomials $H_n$ satisfy the Rodrigues' formula $$H_n(t) = (-1)^ne^{x^2}\dfrac{d^n}{dx^n}e^{-x^2}.$$
Proof: █
Theorem: (Generating function) The Hermite polynomials obey $$e^{2tx-t^2} = \displaystyle\sum_{k=0}^{\infty} \dfrac{H_k(x)t^n}{n!}.$$
Proof: █
Theorem: (Orthogonality) The Hermite polynomials obey $$\displaystyle\int_{-\infty}^{\infty} e^{-x^2}H_n(x)H_m(x)dx=\left\{ \begin{array}{ll} 0 &; m \neq n \\ 2^nn!\sqrt{\pi} &; m=n \end{array} \right..$$
Proof: █
Theorem: $H_n(x)$ is an even function for even $n$ and an odd function for odd $n$.
Proof: █