Difference between revisions of "Factorial"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "Let $n$ be an integer. Then the factorial of $n$, written $n!$, is the integer $$n!=n(n-1)(n-2)\ldots 3 \cdot 2 \cdot 1.$$")
 
 
(4 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
Let $n$ be an integer. Then the factorial of $n$, written $n!$, is the integer  
 
Let $n$ be an integer. Then the factorial of $n$, written $n!$, is the integer  
$$n!=n(n-1)(n-2)\ldots 3 \cdot 2 \cdot 1.$$
+
$$n!=\displaystyle\prod_{k=1}^n k=n(n-1)(n-2)\ldots 3 \cdot 2 \cdot 1.$$
 +
 
 +
=Properties=
 +
[[0!=1]]<br />
 +
 
 +
=See Also=
 +
[[Gamma function]]
 +
 
 +
[[Category:SpecialFunction]]

Latest revision as of 19:40, 9 October 2016

Let $n$ be an integer. Then the factorial of $n$, written $n!$, is the integer $$n!=\displaystyle\prod_{k=1}^n k=n(n-1)(n-2)\ldots 3 \cdot 2 \cdot 1.$$

Properties

0!=1

See Also

Gamma function