Difference between revisions of "Euler E"
From specialfunctionswiki
(Created page with "The Euler polynomials $E_n(x)$ are defined by $$\dfrac{2e^{xt}}{e^t+1} = \sum_{k=0}^{\infty} \dfrac{E_n(x)t^n}{n!}.$$") |
(→Properties) |
||
(8 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
− | The Euler polynomials $E_n(x)$ are defined by | + | __NOTOC__ |
− | $$\ | + | The Euler polynomials $E_n(x)$ are [[orthogonal polynomials]] defined by |
+ | $$E_n(x)=\displaystyle\sum_{k=0}^n {n \choose k} \dfrac{e_k}{2^k} \left( x - \dfrac{1}{2} \right)^{n-k},$$ | ||
+ | where $e_k$ denotes an [[Euler number]]. | ||
+ | |||
+ | *$E_0(x)=1$ | ||
+ | *$E_1(x)=x-\dfrac{1}{2}$ | ||
+ | *$E_2(x)=x^2-x$ | ||
+ | *$E_3(x)=x^3-\dfrac{3}{2}x^2+\dfrac{1}{4}$ | ||
+ | *$E_4(x)=x^4-2x^3+x$ | ||
+ | |||
+ | =Properties= | ||
+ | [[Euler E generating function]]<br /> | ||
+ | [[Euler E n'(x)=nE n-1(x)]]<br /> | ||
+ | |||
+ | <div class="toccolours mw-collapsible mw-collapsed"> | ||
+ | <strong>Theorem:</strong> The following formula holds: | ||
+ | $$E_n(x+y)=\displaystyle\sum_{k=0}^n {n \choose k} E_k(x)y^k.$$ | ||
+ | <div class="mw-collapsible-content"> | ||
+ | <strong>Proof:</strong> █ | ||
+ | </div> | ||
+ | </div> | ||
+ | |||
+ | |||
+ | {{:Orthogonal polynomials footer}} | ||
+ | |||
+ | [[Category:SpecialFunction]] |
Latest revision as of 01:05, 4 March 2018
The Euler polynomials $E_n(x)$ are orthogonal polynomials defined by $$E_n(x)=\displaystyle\sum_{k=0}^n {n \choose k} \dfrac{e_k}{2^k} \left( x - \dfrac{1}{2} \right)^{n-k},$$ where $e_k$ denotes an Euler number.
- $E_0(x)=1$
- $E_1(x)=x-\dfrac{1}{2}$
- $E_2(x)=x^2-x$
- $E_3(x)=x^3-\dfrac{3}{2}x^2+\dfrac{1}{4}$
- $E_4(x)=x^4-2x^3+x$
Properties
Euler E generating function
Euler E n'(x)=nE n-1(x)
Theorem: The following formula holds: $$E_n(x+y)=\displaystyle\sum_{k=0}^n {n \choose k} E_k(x)y^k.$$
Proof: █