Difference between revisions of "Epstein zeta function"
From specialfunctionswiki
(Created page with "=References= [http://www.jstor.org/discover/10.2307/1968602?uid=3739744&uid=2129&uid=2&uid=70&uid=4&uid=3739256&sid=21104980545913 On Epstein's Zeta Function]") |
|||
(3 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
+ | Let $Q(m,n)=cm^2+bmn+an^2$. The Epstein zeta function is | ||
+ | $$\zeta_Q(z)=\displaystyle\sum_{(m,n)\neq (0,0)} \dfrac{1}{Q(m,n)^z}.$$ | ||
+ | |||
=References= | =References= | ||
− | [http://www.jstor.org/discover/10.2307/1968602?uid=3739744&uid=2129&uid=2&uid=70&uid=4&uid=3739256&sid=21104980545913 On Epstein's Zeta Function] | + | [http://www.jstor.org/discover/10.2307/1968602?uid=3739744&uid=2129&uid=2&uid=70&uid=4&uid=3739256&sid=21104980545913 On Epstein's Zeta Function]<br /> |
+ | |||
+ | [[Category:SpecialFunction]] |
Latest revision as of 18:52, 24 May 2016
Let $Q(m,n)=cm^2+bmn+an^2$. The Epstein zeta function is $$\zeta_Q(z)=\displaystyle\sum_{(m,n)\neq (0,0)} \dfrac{1}{Q(m,n)^z}.$$