Difference between revisions of "Matsumoto zeta function"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "Let $P(z)$ be a polynomial. Define the Matsumoto zeta function by $$\phi(z)=\displaystyle\prod_{p \hspace{2pt}\mathrm{prime}} \dfrac{1}{P(p^{-z})}.$$")
 
 
Line 1: Line 1:
 
Let $P(z)$ be a [[polynomial]]. Define the Matsumoto zeta function by
 
Let $P(z)$ be a [[polynomial]]. Define the Matsumoto zeta function by
 
$$\phi(z)=\displaystyle\prod_{p \hspace{2pt}\mathrm{prime}} \dfrac{1}{P(p^{-z})}.$$
 
$$\phi(z)=\displaystyle\prod_{p \hspace{2pt}\mathrm{prime}} \dfrac{1}{P(p^{-z})}.$$
 +
 +
[[Category:SpecialFunction]]

Latest revision as of 18:53, 24 May 2016

Let $P(z)$ be a polynomial. Define the Matsumoto zeta function by $$\phi(z)=\displaystyle\prod_{p \hspace{2pt}\mathrm{prime}} \dfrac{1}{P(p^{-z})}.$$