Difference between revisions of "Arccos"
From specialfunctionswiki
(14 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
− | The function $\mathrm{arccos} \colon | + | __NOTOC__ |
+ | The function $\mathrm{arccos} \colon \mathbb{C} \setminus \{(-\infty,-1) \bigcup (1,\infty) \} \rightarrow \mathbb{C}$ is defined by | ||
+ | $$\rm{arccos}(z)=\dfrac{\pi}{2} + i\log\left( iz + \sqrt{1-z^2} \right),$$ | ||
+ | where $i$ denotes the [[imaginary number]] and $\log$ denotes the [[logarithm]]. | ||
<div align="center"> | <div align="center"> | ||
<gallery> | <gallery> | ||
− | File: | + | File:Arccosplot.png|Graph of $\mathrm{arccos}$ on $[-1,1]$. |
− | File: | + | File:Complexarccosplot.png|[[Domain coloring]] of $\mathrm{arccos}$. |
</gallery> | </gallery> | ||
</div> | </div> | ||
=Properties= | =Properties= | ||
− | + | [[Arccos as inverse cosine]]<br /> | |
− | + | [[Derivative of arccos]]<br /> | |
− | + | [[Antiderivative of arccos]]<br /> | |
− | |||
− | |||
− | |||
− | |||
− | [[ | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | </ | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
=References= | =References= | ||
[http://mathworld.wolfram.com/InverseCosine.html Weisstein, Eric W. "Inverse Cosine." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/InverseCosine.html] | [http://mathworld.wolfram.com/InverseCosine.html Weisstein, Eric W. "Inverse Cosine." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/InverseCosine.html] | ||
+ | |||
+ | =See Also= | ||
+ | [[Cosine]] <br /> | ||
+ | [[Cosh]] <br /> | ||
+ | [[Arccosh]] | ||
+ | |||
+ | {{:Inverse trigonometric functions footer}} | ||
+ | |||
+ | [[Category:SpecialFunction]] |
Latest revision as of 20:04, 22 November 2016
The function $\mathrm{arccos} \colon \mathbb{C} \setminus \{(-\infty,-1) \bigcup (1,\infty) \} \rightarrow \mathbb{C}$ is defined by $$\rm{arccos}(z)=\dfrac{\pi}{2} + i\log\left( iz + \sqrt{1-z^2} \right),$$ where $i$ denotes the imaginary number and $\log$ denotes the logarithm.
Domain coloring of $\mathrm{arccos}$.
Properties
Arccos as inverse cosine
Derivative of arccos
Antiderivative of arccos