Difference between revisions of "Chi"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "The hyperbolic cosine integral $\mathrm{chi} \colon (0,\infty) \rightarrow \mathbb{R}$ is defined by the formula $$\mathrm{chi}(z)=\gamma + \log(z) + \displaystyle\int_0^z \df...")
 
 
(13 intermediate revisions by the same user not shown)
Line 1: Line 1:
The hyperbolic cosine integral $\mathrm{chi} \colon (0,\infty) \rightarrow \mathbb{R}$ is defined by the formula
+
The hyperbolic cosine integral $\mathrm{Chi}$ is defined for $|\mathrm{arg}(z)| < \pi$ the formula
$$\mathrm{chi}(z)=\gamma + \log(z) + \displaystyle\int_0^z \dfrac{\mathrm{cosh}(t)-1}{t} dt,$$
+
$$\mathrm{Chi}(z)=\gamma + \log(z) + \displaystyle\int_0^z \dfrac{\cosh(t)-1}{t} \mathrm{d}t,$$
where $\gamma$ denotes the [[Euler-Mascheroni constant]], $\log$ denotes the [[logarithm]], and $\mathrm{cosh}$ denotes the [[cosh|hyperbolic cosine]] function.
+
where $\gamma$ denotes the [[Euler-Mascheroni constant]], $\log$ denotes the [[logarithm]], and $\cosh$ denotes the [[cosh|hyperbolic cosine]].
  
 
<div align="center">
 
<div align="center">
 
<gallery>
 
<gallery>
File:Coshintegral.png|Graph of $\mathrm{chi}$ on $(0,5]$.
+
File:Chiplot.png|Graph of $\mathrm{Chi}$.
 +
File:Complexchiplot.png|[[Domain coloring]] of $\mathrm{Chi}$.
 
</gallery>
 
</gallery>
 
</div>
 
</div>
 +
 +
=Properties=
 +
[[Derivative of chi]]<br />
 +
[[Antiderivative of chi]]<br />
 +
 +
{{:*-integral functions footer}}
 +
 +
[[Category:SpecialFunction]]

Latest revision as of 23:57, 10 December 2016

The hyperbolic cosine integral $\mathrm{Chi}$ is defined for $|\mathrm{arg}(z)| < \pi$ the formula $$\mathrm{Chi}(z)=\gamma + \log(z) + \displaystyle\int_0^z \dfrac{\cosh(t)-1}{t} \mathrm{d}t,$$ where $\gamma$ denotes the Euler-Mascheroni constant, $\log$ denotes the logarithm, and $\cosh$ denotes the hyperbolic cosine.

Properties

Derivative of chi
Antiderivative of chi

$\ast$-integral functions