Difference between revisions of "Digamma"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "The digamma function $\psi$ is defined by $$\psi(z) = \dfrac{d}{dz} \log \Gamma(z) = \dfrac{\Gamma'(z)}{\Gamma(z)}.$$")
 
 
(16 intermediate revisions by the same user not shown)
Line 1: Line 1:
The digamma function $\psi$ is defined by
+
The digamma function $\psi \colon \mathbb{C} \setminus \{0,-1,-2,\ldots\} \rightarrow \mathbb{C}$ is defined by
$$\psi(z) = \dfrac{d}{dz} \log \Gamma(z) = \dfrac{\Gamma'(z)}{\Gamma(z)}.$$
+
$$\psi(z) = \dfrac{\mathrm{d}}{\mathrm{d}z} \log \Gamma(z) = \dfrac{\Gamma'(z)}{\Gamma(z)}.$$
 +
 
 +
<div align="center">
 +
<gallery>
 +
File:Plot digamma.png|Graph of $\psi$.
 +
File:Complexdigammaplot.png|[[Domain coloring]] of $\psi(z)$.
 +
</gallery>
 +
</div>
 +
 
 +
=Properties=
 +
[[Partial derivative of beta function]]<br />
 +
[[Digamma at 1]]<br />
 +
[[Digamma functional equation]]<br />
 +
[[Digamma at n+1]]<br />
 +
 
 +
=See Also=
 +
[[Gamma]] <br />
 +
[[Polygamma]]<br />
 +
[[Trigamma]] <br />
 +
 
 +
=References=
 +
* {{BookReference|Higher Transcendental Functions Volume I|1953|Arthur Erdélyi|author2=Wilhelm Magnus|author3=Fritz Oberhettinger|author4=Francesco G. Tricomi|prev=findme|next=findme}}: $\S 1.7 (1)$
 +
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Beta is symmetric|next=Digamma at 1}}: $6.3.1$
 +
 
 +
[[Category:SpecialFunction]]

Latest revision as of 23:21, 3 March 2018

The digamma function $\psi \colon \mathbb{C} \setminus \{0,-1,-2,\ldots\} \rightarrow \mathbb{C}$ is defined by $$\psi(z) = \dfrac{\mathrm{d}}{\mathrm{d}z} \log \Gamma(z) = \dfrac{\Gamma'(z)}{\Gamma(z)}.$$

Properties

Partial derivative of beta function
Digamma at 1
Digamma functional equation
Digamma at n+1

See Also

Gamma
Polygamma
Trigamma

References