Difference between revisions of "Sievert integral"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "$$\int_0^{\theta} e^{-z \sec \phi} d \phi$$")
 
 
(7 intermediate revisions by the same user not shown)
Line 1: Line 1:
$$\int_0^{\theta} e^{-z \sec \phi} d \phi$$
+
__NOTOC__
 +
The Sievert integral $S$ is defined by
 +
$$S(x,\theta)=\int_0^{\theta} e^{-x \sec(\phi)} \mathrm{d} \phi,$$
 +
where $e^{*}$ denotes the [[exponential]] and $\sec$ denotes [[secant]].
 +
 
 +
=Properties=
 +
[[Asymptotic behavior of Sievert integral]]<br />
 +
[[Relationship between Sievert integral and exponential integral E]]<br />
 +
[[Relationship between Sievert integral and Bessel K]]<br />
 +
 
 +
=External links=
 +
[http://www.tandfonline.com/doi/pdf/10.3109/00016923009176822?needAccess=true]<br />
 +
 
 +
=References=
 +
{{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=findme|next=Asymptotic behavior of Sievert integral}}
 +
 
 +
[[Category:SpecialFunction]]

Latest revision as of 02:09, 21 December 2016

The Sievert integral $S$ is defined by $$S(x,\theta)=\int_0^{\theta} e^{-x \sec(\phi)} \mathrm{d} \phi,$$ where $e^{*}$ denotes the exponential and $\sec$ denotes secant.

Properties

Asymptotic behavior of Sievert integral
Relationship between Sievert integral and exponential integral E
Relationship between Sievert integral and Bessel K

External links

[1]

References

1964: Milton Abramowitz and Irene A. Stegun: Handbook of mathematical functions ... (previous) ... (next)