Difference between revisions of "Binomial coefficient"
(18 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
− | The binomial | + | The binomial coefficient ${n \choose k}$ are defined for non-negative $n$ and $k$ by the formula |
− | $$ | + | $${n \choose k} = \dfrac{n!}{(n-k)!k!},$$ |
+ | where $n!$ denotes the [[factorial]]. More generally, if $\alpha \in \mathbb{C}$ we define the (generalized) binomial coefficient by | ||
+ | $${\alpha \choose k} = \dfrac{\alpha^{\underline{k}}}{k!},$$ | ||
+ | where $\alpha^{\underline{k}}$ denotes the [[falling factorial]]. | ||
+ | |||
+ | <div align="center"> | ||
+ | <gallery> | ||
+ | File:Binomialcoefficient,n=20plot.png|Graph of $\displaystyle{20 \choose k}$. | ||
+ | File:Binomialcoefficientfunction.png|Graph of the complex binomial coefficient function. | ||
+ | </gallery> | ||
+ | </div> | ||
=Properties= | =Properties= | ||
− | < | + | [[Binomial theorem]]<br /> |
− | < | + | [[Binomial series]]<br /> |
− | < | + | [[Binomial coefficient (n choose k) equals (n choose (n-k))]]<br /> |
− | < | + | [[Binomial coefficient (n choose k) equals (-1)^k ((k-n-1) choose k)]]<br /> |
− | </ | + | [[Binomial coefficient ((n+1) choose k) equals (n choose k) + (n choose (k-1))]]<br /> |
− | </ | + | [[Binomial coefficient (n choose 0) equals 1]]<br /> |
+ | [[Binomial coefficient (n choose n) equals 1]]<br /> | ||
+ | [[Sum over bottom of binomial coefficient with top fixed equals 2^n]]<br /> | ||
+ | [[Alternating sum over bottom of binomial coefficient with top fixed equals 0]]<br /> | ||
+ | |||
+ | =Videos= | ||
+ | [https://www.youtube.com/watch?v=OMr9ZF1jgNc Pascal's Triangle and the Binomial Coefficients]<br /> | ||
+ | [https://www.youtube.com/watch?v=MVmgsATTg2I Example of choose function (Binomial Coefficient)]<br /> | ||
+ | [https://www.youtube.com/watch?v=lGow-vogneQ Binomial coefficients]<br /> | ||
=References= | =References= | ||
− | [http:// | + | * {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Binomial theorem|next=Binomial coefficient (n choose k) equals (n choose (n-k))}}: $3.1.2$ |
+ | *[http://www.jstor.org/discover/10.2307/2975209?sid=21105065140641&uid=4&uid=70&uid=2&uid=3739256&uid=3739744&uid=2129 The Binomial Coefficient Function]<br /> | ||
+ | |||
+ | [[Category:SpecialFunction]] |
Latest revision as of 18:37, 25 September 2016
The binomial coefficient ${n \choose k}$ are defined for non-negative $n$ and $k$ by the formula $${n \choose k} = \dfrac{n!}{(n-k)!k!},$$ where $n!$ denotes the factorial. More generally, if $\alpha \in \mathbb{C}$ we define the (generalized) binomial coefficient by $${\alpha \choose k} = \dfrac{\alpha^{\underline{k}}}{k!},$$ where $\alpha^{\underline{k}}$ denotes the falling factorial.
Properties
Binomial theorem
Binomial series
Binomial coefficient (n choose k) equals (n choose (n-k))
Binomial coefficient (n choose k) equals (-1)^k ((k-n-1) choose k)
Binomial coefficient ((n+1) choose k) equals (n choose k) + (n choose (k-1))
Binomial coefficient (n choose 0) equals 1
Binomial coefficient (n choose n) equals 1
Sum over bottom of binomial coefficient with top fixed equals 2^n
Alternating sum over bottom of binomial coefficient with top fixed equals 0
Videos
Pascal's Triangle and the Binomial Coefficients
Example of choose function (Binomial Coefficient)
Binomial coefficients
References
- 1964: Milton Abramowitz and Irene A. Stegun: Handbook of mathematical functions ... (previous) ... (next): $3.1.2$
- The Binomial Coefficient Function