Difference between revisions of "Hypergeometric pFq"
(Created page with "Let $p,q \in \{0,1,2,\ldots\}$ and $a_j,b_{\ell} \in \mathbb{R}$ for $j=1,\ldots,p$ and $\ell=1,\ldots,q$. Define the generalized hypergeometric function $${}_pF_q(a_1,a_2,\ld...") |
|||
(86 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
− | + | __NOTOC__ | |
− | $${}_pF_q(a_1 | + | The generalized hypergeometric function ${}_pF_q$ is defined by |
+ | $${}_pF_q(a_1,\ldots,a_p;b_1,\ldots,b_q;z)=\displaystyle\sum_{k=0}^{\infty} \dfrac{(a_1)_k(a_2)_k\ldots(a_p)_k}{(b_1)_k(b_2)_k\ldots(b_q)_k} \dfrac{z^k}{k!},$$ | ||
+ | where $(a_1)_k$ denotes the [[Pochhammer]] symbol. | ||
− | ==Convergence | + | =Properties= |
− | + | [[Convergence of Hypergeometric pFq]]<br /> | |
+ | [[Hypergeometric pFq terminates to a polynomial if an a_j is a nonpositive integer]]<br /> | ||
+ | [[Hypergeometric pFq diverges if a b_j is a nonpositive integer]]<br /> | ||
+ | [[Hypergeometric pFq converges for all z if p less than q+1]]<br /> | ||
+ | [[Hypergeometric pFq converges in the unit disk if p=q+1]]<br /> | ||
+ | [[Hypergeometric pFq diverges if p greater than q+1]]<br /> | ||
− | + | [[Derivatives of Hypergeometric pFq]]<br /> | |
+ | [[Differential equation for Hypergeometric pFq]]<br /> | ||
− | + | =Videos= | |
+ | [https://www.youtube.com/watch?v=l8udH-Zb5Vs Special functions - Hypergeometric series (9 March 2011)]<br /> | ||
− | = | + | =External links= |
− | + | [http://www.johndcook.com/HypergeometricFunctions.pdf Notes on hypergeometric functions]<br /> | |
− | + | [http://gdz.sub.uni-goettingen.de/dms/load/img/?PID=PPN600494829_0016%7CLOG_0038 Note on a hypergeometric series - Cayley]<br /> | |
− | === | + | =References= |
− | + | * {{BookReference|Higher Transcendental Functions Volume I|1953|Arthur Erdélyi|author2=Wilhelm Magnus|author3=Fritz Oberhettinger|author4=Francesco G. Tricomi|prev=findme|next=Pochhammer}}: $4.1 (1)$ (note: typo in the text, the sum there starts at $1$ but should start at $0$) | |
− | + | * {{BookReference|Higher Transcendental Functions Volume I|1953|Arthur Erdélyi|author2=Wilhelm Magnus|author3=Fritz Oberhettinger|author4=Francesco G. Tricomi|prev=findme|next=Pochhammer}}: $5.1 (2)$ | |
+ | * {{BookReference|Special Functions of Mathematical Physics and Chemistry|1956|Ian N. Sneddon|prev=findme|next=findme}}: $\S 12 (12.4)$ | ||
+ | * {{BookReference|Special Functions for Scientists and Engineers|1968|W.W. Bell|prev=findme|next=findme}}: $(9.1)$ | ||
− | + | {{:Hypergeometric functions footer}} | |
− | + | ||
− | + | [[Category:SpecialFunction]] |
Latest revision as of 14:42, 15 March 2018
The generalized hypergeometric function ${}_pF_q$ is defined by $${}_pF_q(a_1,\ldots,a_p;b_1,\ldots,b_q;z)=\displaystyle\sum_{k=0}^{\infty} \dfrac{(a_1)_k(a_2)_k\ldots(a_p)_k}{(b_1)_k(b_2)_k\ldots(b_q)_k} \dfrac{z^k}{k!},$$ where $(a_1)_k$ denotes the Pochhammer symbol.
Properties
Convergence of Hypergeometric pFq
Hypergeometric pFq terminates to a polynomial if an a_j is a nonpositive integer
Hypergeometric pFq diverges if a b_j is a nonpositive integer
Hypergeometric pFq converges for all z if p less than q+1
Hypergeometric pFq converges in the unit disk if p=q+1
Hypergeometric pFq diverges if p greater than q+1
Derivatives of Hypergeometric pFq
Differential equation for Hypergeometric pFq
Videos
Special functions - Hypergeometric series (9 March 2011)
External links
Notes on hypergeometric functions
Note on a hypergeometric series - Cayley
References
- 1953: Arthur Erdélyi, Wilhelm Magnus, Fritz Oberhettinger and Francesco G. Tricomi: Higher Transcendental Functions Volume I ... (previous) ... (next): $4.1 (1)$ (note: typo in the text, the sum there starts at $1$ but should start at $0$)
- 1953: Arthur Erdélyi, Wilhelm Magnus, Fritz Oberhettinger and Francesco G. Tricomi: Higher Transcendental Functions Volume I ... (previous) ... (next): $5.1 (2)$
- 1956: Ian N. Sneddon: Special Functions of Mathematical Physics and Chemistry ... (previous) ... (next): $\S 12 (12.4)$
- 1968: W.W. Bell: Special Functions for Scientists and Engineers ... (previous) ... (next): $(9.1)$