Difference between revisions of "Jacobi cs"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "The $\mathrm{cs}$ function is defined by $$\mathrm{cs}(u)=\dfrac{\mathrm{cn}(u)}{\mathrm{sn}(u)},$$ where $\mathrm{cn}$ is the Jacobi cn function and $\mathrm{sn}$ is the...")
 
 
(6 intermediate revisions by the same user not shown)
Line 2: Line 2:
 
$$\mathrm{cs}(u)=\dfrac{\mathrm{cn}(u)}{\mathrm{sn}(u)},$$
 
$$\mathrm{cs}(u)=\dfrac{\mathrm{cn}(u)}{\mathrm{sn}(u)},$$
 
where $\mathrm{cn}$ is the [[Jacobi cn]] function and $\mathrm{sn}$ is the [[Jacobi sn]] function.
 
where $\mathrm{cn}$ is the [[Jacobi cn]] function and $\mathrm{sn}$ is the [[Jacobi sn]] function.
 +
 +
<div align="center">
 +
<gallery>
 +
File:Complexjacobics,m=0.8plot.png|[[Domain coloring]] of $\mathrm{cs}$ with $m=0.8$.
 +
</gallery>
 +
</div>
 +
 +
=References=
 +
[http://web.mst.edu/~lmhall/SPFNS/spfns.pdf Special functions by Leon Hall]
 +
 +
{{:Jacobi elliptic functions footer}}
 +
 +
[[Category:SpecialFunction]]

Latest revision as of 19:06, 5 July 2016

The $\mathrm{cs}$ function is defined by $$\mathrm{cs}(u)=\dfrac{\mathrm{cn}(u)}{\mathrm{sn}(u)},$$ where $\mathrm{cn}$ is the Jacobi cn function and $\mathrm{sn}$ is the Jacobi sn function.

References

Special functions by Leon Hall

Jacobi Elliptic Functions