Difference between revisions of "Weierstrass factorization of sine"
From specialfunctionswiki
(Created page with "<div class="toccolours mw-collapsible mw-collapsed" style="width:800px"> <strong>Proposition:</strong> $\sin$$(x) = x \displayst...") |
|||
(5 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
− | + | ==Theorem== | |
− | + | The following formula holds: | |
− | + | $$\sin(z) = z \displaystyle\prod_{k=1}^{\infty} \left( 1 - \dfrac{z^2}{k^2\pi^2} \right),$$ | |
− | + | where $\sin$ denotes the [[sine]] function and $\pi$ denotes [[pi]]. | |
− | + | ||
− | + | ==Proof== | |
+ | |||
+ | ==References== | ||
+ | |||
+ | [[Category:Theorem]] | ||
+ | [[Category:Unproven]] |
Latest revision as of 07:32, 8 June 2016
Theorem
The following formula holds: $$\sin(z) = z \displaystyle\prod_{k=1}^{\infty} \left( 1 - \dfrac{z^2}{k^2\pi^2} \right),$$ where $\sin$ denotes the sine function and $\pi$ denotes pi.