Difference between revisions of "Dirichlet L-function"
From specialfunctionswiki
(Created page with "=References= [http://empslocal.ex.ac.uk/people/staff/mrwatkin//zeta/devlin.pdf How Euler discovered the zeta function]") |
|||
(3 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
+ | Let $\chi$ be a [[Dirichlet character]]. The Dirichlet $L$-function associated with $\chi$ is | ||
+ | $$L(s,\chi)=\displaystyle\sum_n \dfrac{\chi(n)}{n^s} = \displaystyle\prod_{p \hspace{2pt} \mathrm{prime}} \dfrac{1}{1-\chi(p)p^{-s}}.$$ | ||
+ | |||
=References= | =References= | ||
[http://empslocal.ex.ac.uk/people/staff/mrwatkin//zeta/devlin.pdf How Euler discovered the zeta function] | [http://empslocal.ex.ac.uk/people/staff/mrwatkin//zeta/devlin.pdf How Euler discovered the zeta function] | ||
+ | |||
+ | [[Category:SpecialFunction]] |
Latest revision as of 19:27, 17 November 2016
Let $\chi$ be a Dirichlet character. The Dirichlet $L$-function associated with $\chi$ is $$L(s,\chi)=\displaystyle\sum_n \dfrac{\chi(n)}{n^s} = \displaystyle\prod_{p \hspace{2pt} \mathrm{prime}} \dfrac{1}{1-\chi(p)p^{-s}}.$$