Difference between revisions of "Lerch transcendent polylogarithm"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "<div class="toccolours mw-collapsible mw-collapsed"> <strong>Proposition:</strong> The following formula holds: $$\Phi(z,n,1)=\dfrac{\math...")
 
 
Line 1: Line 1:
<div class="toccolours mw-collapsible mw-collapsed">
+
==Theorem==
<strong>[[Lerch transcendent polylogarithm|Proposition]]:</strong> The following formula holds:
+
The following formula holds:
 
$$\Phi(z,n,1)=\dfrac{\mathrm{Li}_n(z)}{z},$$
 
$$\Phi(z,n,1)=\dfrac{\mathrm{Li}_n(z)}{z},$$
 
where $\Phi$ denotes the [[Lerch transcendent]] and $\mathrm{Li_n}$ denotes the [[polylogarithm]].
 
where $\Phi$ denotes the [[Lerch transcendent]] and $\mathrm{Li_n}$ denotes the [[polylogarithm]].
<div class="mw-collapsible-content">
+
 
<strong>Proof:</strong> █
+
==Proof==
</div>
+
 
</div>
+
==References==
 +
 
 +
[[Category:Theorem]]
 +
[[Category:Unproven]]

Latest revision as of 16:33, 20 June 2016

Theorem

The following formula holds: $$\Phi(z,n,1)=\dfrac{\mathrm{Li}_n(z)}{z},$$ where $\Phi$ denotes the Lerch transcendent and $\mathrm{Li_n}$ denotes the polylogarithm.

Proof

References