Difference between revisions of "Catalan's constant"

From specialfunctionswiki
Jump to: navigation, search
 
(3 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
Catalan's constant is
 
Catalan's constant is
$$G=\displaystyle\sum_{k=0}^{\infty} \dfrac{(-1)^k}{(2k+1)^2} = 0.915 965 594 177 219 015 054 603 514 932 384 110 774 \ldots.$$
+
$$K=\displaystyle\sum_{k=0}^{\infty} \dfrac{(-1)^k}{(2k+1)^2} = 0.915 965 594 177 219 015 054 603 514 932 384 110 774 \ldots.$$
 
This means that Catalan's constant can be expressed as $\beta(2)$ where $\beta$ is the [[Dirichlet beta function]].
 
This means that Catalan's constant can be expressed as $\beta(2)$ where $\beta$ is the [[Dirichlet beta function]].
  
 
=Properties=
 
=Properties=
{{:Catalan's constant using Dirichlet beta}}
+
[[Catalan's constant using Dirichlet beta]]<br />
 +
[[Catalan's constant using Legendre chi]]<br />
 +
[[Catalan's constant using Hurwitz zeta]]<br />
  
<div class="toccolours mw-collapsible mw-collapsed">
+
[[Category:SpecialFunction]]
<strong>[[Catalan's constant using Legendre chi]]:</strong> The following formula holds:
 
$$K=-i\chi_2(i),$$
 
where $K$ is [[Catalan's constant]] and $\chi$ denotes the [[Legendre chi]] function.
 
where
 
<div class="mw-collapsible-content">
 
<strong>Proof:</strong> █
 
</div>
 
</div>
 
 
 
{{:Catalan's constant using Hurwitz zeta}}
 

Latest revision as of 15:40, 25 February 2018

Catalan's constant is $$K=\displaystyle\sum_{k=0}^{\infty} \dfrac{(-1)^k}{(2k+1)^2} = 0.915 965 594 177 219 015 054 603 514 932 384 110 774 \ldots.$$ This means that Catalan's constant can be expressed as $\beta(2)$ where $\beta$ is the Dirichlet beta function.

Properties

Catalan's constant using Dirichlet beta
Catalan's constant using Legendre chi
Catalan's constant using Hurwitz zeta