Difference between revisions of "Legendre chi"

From specialfunctionswiki
Jump to: navigation, search
 
(7 intermediate revisions by the same user not shown)
Line 1: Line 1:
The Legendre chi function is defined by
+
The Legendre chi function $\chi_{\nu}$ is defined by
 
$$\chi_{\nu}(z)=\displaystyle\sum_{k=0}^{\infty} \dfrac{z^{2k+1}}{(2k+1)^{\nu}}.$$
 
$$\chi_{\nu}(z)=\displaystyle\sum_{k=0}^{\infty} \dfrac{z^{2k+1}}{(2k+1)^{\nu}}.$$
  
 
=Properties=
 
=Properties=
{{:Legendre chi in terms of polylogarithm}}
+
[[Derivative of Legendre chi 2]]<br />
{{:Catalan's constant using Legendre chi}}
+
[[Legendre chi in terms of polylogarithm]]<br />
 +
[[Catalan's constant using Legendre chi]]<br />
 +
[[Legendre chi in terms of Lerch transcendent]]<br />
 +
 
 +
=References=
 +
[http://en.wikipedia.org/wiki/Legendre_chi_function]
 +
 
 +
[[Category:SpecialFunction]]

Latest revision as of 17:48, 25 June 2017

The Legendre chi function $\chi_{\nu}$ is defined by $$\chi_{\nu}(z)=\displaystyle\sum_{k=0}^{\infty} \dfrac{z^{2k+1}}{(2k+1)^{\nu}}.$$

Properties

Derivative of Legendre chi 2
Legendre chi in terms of polylogarithm
Catalan's constant using Legendre chi
Legendre chi in terms of Lerch transcendent

References

[1]