Difference between revisions of "Derivative of Legendre chi 2"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "<div class="toccolours mw-collapsible mw-collapsed"> <strong>Proposition:</strong> The following formula holds: $$\dfrac{d}{dx} \chi_2(x) = \dfr...")
 
 
(4 intermediate revisions by the same user not shown)
Line 1: Line 1:
<div class="toccolours mw-collapsible mw-collapsed">
+
==Theorem==
<strong>[[Derivative of Legendre chi|Proposition]]:</strong> The following formula holds:
+
The following formula holds:
$$\dfrac{d}{dx} \chi_2(x) = \dfrac{\mathrm{arctanh}(x)}{x},$$
+
$$\dfrac{\mathrm{d}}{\mathrm{d}z} \chi_2(z) = \dfrac{\mathrm{arctanh}(z)}{z},$$
 
where $\chi$ denotes the [[Legendre chi]] function and $\mathrm{arctanh}$ denotes the [[Arctanh|inverse hyperbolic tangent]] function.
 
where $\chi$ denotes the [[Legendre chi]] function and $\mathrm{arctanh}$ denotes the [[Arctanh|inverse hyperbolic tangent]] function.
<div class="mw-collapsible-content">
+
 
<strong>Proof:</strong> █
+
==Proof==
</div>
+
 
</div>
+
==References==
 +
 
 +
[[Category:Theorem]]
 +
[[Category:Unproven]]

Latest revision as of 01:31, 1 July 2017

Theorem

The following formula holds: $$\dfrac{\mathrm{d}}{\mathrm{d}z} \chi_2(z) = \dfrac{\mathrm{arctanh}(z)}{z},$$ where $\chi$ denotes the Legendre chi function and $\mathrm{arctanh}$ denotes the inverse hyperbolic tangent function.

Proof

References