Difference between revisions of "Legendre chi"

From specialfunctionswiki
Jump to: navigation, search
 
(5 intermediate revisions by the same user not shown)
Line 1: Line 1:
The Legendre chi function is defined by
+
The Legendre chi function $\chi_{\nu}$ is defined by
 
$$\chi_{\nu}(z)=\displaystyle\sum_{k=0}^{\infty} \dfrac{z^{2k+1}}{(2k+1)^{\nu}}.$$
 
$$\chi_{\nu}(z)=\displaystyle\sum_{k=0}^{\infty} \dfrac{z^{2k+1}}{(2k+1)^{\nu}}.$$
  
 
=Properties=
 
=Properties=
<div class="toccolours mw-collapsible mw-collapsed">
+
[[Derivative of Legendre chi 2]]<br />
<strong>Proposition:</strong> The following formula holds for real $x>0$:
+
[[Legendre chi in terms of polylogarithm]]<br />
$$\chi_2(x)+\chi_2 \left( \dfrac{1}{x} \right) = \dfrac{\pi^2}{4} - \dfrac{i\pi}{2}|\log x|.$$
+
[[Catalan's constant using Legendre chi]]<br />
<div class="mw-collapsible-content">
+
[[Legendre chi in terms of Lerch transcendent]]<br />
<strong>Proof:</strong>
 
</div>
 
</div>
 
  
{{:Derivative of Legendre chi}}
+
=References=
 +
[http://en.wikipedia.org/wiki/Legendre_chi_function]
  
{{:Legendre chi in terms of polylogarithm}}
+
[[Category:SpecialFunction]]
{{:Catalan's constant using Legendre chi}}
 
 
 
=References=
 
[[http://en.wikipedia.org/wiki/Legendre_chi_function]]
 

Latest revision as of 17:48, 25 June 2017

The Legendre chi function $\chi_{\nu}$ is defined by $$\chi_{\nu}(z)=\displaystyle\sum_{k=0}^{\infty} \dfrac{z^{2k+1}}{(2k+1)^{\nu}}.$$

Properties

Derivative of Legendre chi 2
Legendre chi in terms of polylogarithm
Catalan's constant using Legendre chi
Legendre chi in terms of Lerch transcendent

References

[1]