Difference between revisions of "Jacobi dc"
From specialfunctionswiki
(5 intermediate revisions by the same user not shown) | |||
Line 2: | Line 2: | ||
$$\mathrm{dc}(u)=\dfrac{\mathrm{dn}(u)}{\mathrm{cn}(u)},$$ | $$\mathrm{dc}(u)=\dfrac{\mathrm{dn}(u)}{\mathrm{cn}(u)},$$ | ||
where $\mathrm{dn}$ is the [[Jacobi dn]] function and $\mathrm{cn}$ is the [[Jacobi cn]] function. | where $\mathrm{dn}$ is the [[Jacobi dn]] function and $\mathrm{cn}$ is the [[Jacobi cn]] function. | ||
+ | |||
+ | <div align="center"> | ||
+ | <gallery> | ||
+ | File:Complexjacobidc,m=0.8plot.png|[[Domain coloring]] of $\mathrm{dc}$ with $m=0.8$. | ||
+ | </gallery> | ||
+ | </div> | ||
=References= | =References= | ||
Line 7: | Line 13: | ||
{{:Jacobi elliptic functions footer}} | {{:Jacobi elliptic functions footer}} | ||
+ | |||
+ | [[Category:SpecialFunction]] |
Latest revision as of 19:06, 5 July 2016
The $\mathrm{dc}$ function is defined by $$\mathrm{dc}(u)=\dfrac{\mathrm{dn}(u)}{\mathrm{cn}(u)},$$ where $\mathrm{dn}$ is the Jacobi dn function and $\mathrm{cn}$ is the Jacobi cn function.
Domain coloring of $\mathrm{dc}$ with $m=0.8$.
References
Special functions by Leon Hall