Difference between revisions of "Bessel polynomial generalized hypergeometric"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "<div class="toccolours mw-collapsible mw-collapsed"> <strong>Theorem:</strong> The following formula holds: $$y_n(x)={}_2F_0 \...")
 
 
(2 intermediate revisions by the same user not shown)
Line 2: Line 2:
 
<strong>[[Bessel polynomial generalized hypergeometric|Theorem]]:</strong> The following formula holds:
 
<strong>[[Bessel polynomial generalized hypergeometric|Theorem]]:</strong> The following formula holds:
 
$$y_n(x)={}_2F_0 \left( -n, 1+n;-; -\dfrac{1}{2}x \right),$$
 
$$y_n(x)={}_2F_0 \left( -n, 1+n;-; -\dfrac{1}{2}x \right),$$
where $y_n(x)$ denotes a [[Bessel polynomial]] and ${}_2F_0$ denotes the [[generalized hypergeometric function]].
+
where $y_n(x)$ denotes a [[Bessel polynomial]] and ${}_2F_0$ denotes the [[hypergeometric pFq]].
 
<div class="mw-collapsible-content">
 
<div class="mw-collapsible-content">
 
<strong>Proof:</strong> █  
 
<strong>Proof:</strong> █  
 
</div>
 
</div>
 
</div>
 
</div>

Latest revision as of 10:18, 23 March 2015

Theorem: The following formula holds: $$y_n(x)={}_2F_0 \left( -n, 1+n;-; -\dfrac{1}{2}x \right),$$ where $y_n(x)$ denotes a Bessel polynomial and ${}_2F_0$ denotes the hypergeometric pFq.

Proof: