Difference between revisions of "Genocchi numbers"

From specialfunctionswiki
Jump to: navigation, search
(Properties)
 
(One intermediate revision by the same user not shown)
Line 3: Line 3:
  
 
=Properties=
 
=Properties=
<div class="toccolours mw-collapsible mw-collapsed">
 
<strong>Proposition:</strong> The following values hold for the Genocchi numbers:
 
$$G_1=1, G_3=G_5=G_7=G_9=G_11=\ldots=0.$$
 
<div class="mw-collapsible-content">
 
<strong>Proof:</strong> █
 
</div>
 
</div>
 
 
 
<div class="toccolours mw-collapsible mw-collapsed">
 
<div class="toccolours mw-collapsible mw-collapsed">
 
<strong>Proposition:</strong> The following formula holds:
 
<strong>Proposition:</strong> The following formula holds:
Line 19: Line 11:
 
</div>
 
</div>
 
</div>
 
</div>
 +
 +
[[Category:SpecialFunction]]

Latest revision as of 18:57, 24 May 2016

The Genocchi numbers $G_n$ are given by the generating function $$\dfrac{2t}{e^t+1} = \displaystyle\sum_{k=0}^{\infty} G_n \dfrac{t^n}{n!}.$$

Properties

Proposition: The following formula holds: $$G_{2n}=2(1-2^{2n})B_{2n}= 2nE_{2n-1}(0),$$ where $G_{2n}$ denotes Genocchi numbers, $B_{2n}$ denotes Bernoulli numbers, and $E_{2n-1}$ denotes an Euler polynomial.

Proof: