Difference between revisions of "Prime number theorem, pi and x/log(x)"

From specialfunctionswiki
Jump to: navigation, search
 
(One intermediate revision by the same user not shown)
Line 1: Line 1:
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
+
==Theorem==
<strong>[[Prime number theorem, pi and x/log(x)|Theorem (Prime Number Theorem)]]:</strong> The function $\pi(x)$ obeys the formula
+
The function $\pi(x)$ obeys the formula
 
$$\lim_{x \rightarrow \infty} \dfrac{\pi(x)}{\frac{x}{\log(x)}}=1,$$
 
$$\lim_{x \rightarrow \infty} \dfrac{\pi(x)}{\frac{x}{\log(x)}}=1,$$
 
where $\pi$ denotes the [[Prime counting|prime counting function]] and $\log$ denotes the [[logarithm]].
 
where $\pi$ denotes the [[Prime counting|prime counting function]] and $\log$ denotes the [[logarithm]].
<div class="mw-collapsible-content">
+
 
<strong>Proof:</strong>
+
==Proof==
</div>
+
 
</div>
+
==References==
 +
 
 +
[[Category:Theorem]]
 +
[[Category:Unproven]]

Latest revision as of 20:25, 27 June 2016

Theorem

The function $\pi(x)$ obeys the formula $$\lim_{x \rightarrow \infty} \dfrac{\pi(x)}{\frac{x}{\log(x)}}=1,$$ where $\pi$ denotes the prime counting function and $\log$ denotes the logarithm.

Proof

References