Difference between revisions of "Shi"

From specialfunctionswiki
Jump to: navigation, search
 
(8 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
The hyperbolic sine integral is defined by the formula
 
The hyperbolic sine integral is defined by the formula
$$\mathrm{Shi}(z)=\displaystyle\int_0^z \dfrac{\mathrm{sinh}(t)}{t} dt.$$
+
$$\mathrm{Shi}(z)=\displaystyle\int_0^z \dfrac{\mathrm{sinh}(t)}{t} \mathrm{d}t.$$
 +
 
 +
<div align="center">
 +
<gallery>
 +
File:Shiplot.png|Plot of $\mathrm{Shi}$.
 +
File:Complexshiplot.png|[[Domain coloring]] of $\mathrm{Shi}$.
 +
</gallery>
 +
</div>
  
 
{{:*-integral functions footer}}
 
{{:*-integral functions footer}}
 +
 +
[[Category:SpecialFunction]]

Latest revision as of 23:11, 11 June 2016

The hyperbolic sine integral is defined by the formula $$\mathrm{Shi}(z)=\displaystyle\int_0^z \dfrac{\mathrm{sinh}(t)}{t} \mathrm{d}t.$$

$\ast$-integral functions