Difference between revisions of "Partial derivative of beta function"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "<div class="toccolours mw-collapsible mw-collapsed" style="width:800px"> <strong>Theorem:</strong> The following formula holds: $$\dfra...")
 
 
(One intermediate revision by the same user not shown)
Line 1: Line 1:
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
+
==Theorem==
<strong>[[Partial derivative of beta function|Theorem]]:</strong> The following formula holds:
+
The following formula holds:
$$\dfrac{\partial}{\partial x} B(x,y)=B(x,y) \left( \dfrac{\Gamma'(x)}{\Gamma(x)} - \dfrac{\Gamma'(x+y)}{\Gamma(x+y)} \right) = B(x,y)(\psi(x) - \psi(x+y),$$
+
$$\dfrac{\partial}{\partial x} B(x,y)=B(x,y) \left( \dfrac{\Gamma'(x)}{\Gamma(x)} - \dfrac{\Gamma'(x+y)}{\Gamma(x+y)} \right) = B(x,y)(\psi(x) - \psi(x+y)),$$
 
where $B$ denotes the [[Beta function]], $\Gamma$ denotes the [[gamma function]], and $\psi$ denotes the [[digamma function]].
 
where $B$ denotes the [[Beta function]], $\Gamma$ denotes the [[gamma function]], and $\psi$ denotes the [[digamma function]].
<div class="mw-collapsible-content">
+
 
<strong>Proof:</strong> █
+
==Proof==
</div>
+
 
</div>
+
==References==
 +
 
 +
[[Category:Theorem]]
 +
[[Category:Unproven]]

Latest revision as of 15:32, 23 June 2016

Theorem

The following formula holds: $$\dfrac{\partial}{\partial x} B(x,y)=B(x,y) \left( \dfrac{\Gamma'(x)}{\Gamma(x)} - \dfrac{\Gamma'(x+y)}{\Gamma(x+y)} \right) = B(x,y)(\psi(x) - \psi(x+y)),$$ where $B$ denotes the Beta function, $\Gamma$ denotes the gamma function, and $\psi$ denotes the digamma function.

Proof

References