Difference between revisions of "Q-derivative power rule"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "<div class="toccolours mw-collapsible mw-collapsed"> <strong>Theorem:</strong> The following formula holds: $$D_q(z^n)=[n]_q z^{n-1},$$ where $D_q$...")
 
 
(2 intermediate revisions by the same user not shown)
Line 1: Line 1:
<div class="toccolours mw-collapsible mw-collapsed">
+
==Theorem==
<strong>[[Q-derivative power rule|Theorem]]:</strong> The following formula holds:
+
The following formula holds:
 
$$D_q(z^n)=[n]_q z^{n-1},$$
 
$$D_q(z^n)=[n]_q z^{n-1},$$
where $D_q$ denotes the [[q-derivative|$q$-derivative]] and $[n]_q$ denotes the [[q-factorial|$q$-factorial]].
+
where $D_q$ denotes the [[q-derivative|$q$-derivative]] and $[n]_q$ denotes the [[q-number|$q$-number]].
<div class="mw-collapsible-content">
+
 
<strong>Proof:</strong> █
+
==Proof==
</div>
+
 
</div>
+
==References==
 +
* {{PaperReference|q-exponential and q-gamma functions. I. q-exponential functions|1994|D.S. McAnally|prev=q-Derivative|next=q-number}} $(2.2)$
 +
 
 +
[[Category:Theorem]]
 +
[[Category:Unproven]]

Latest revision as of 19:37, 18 December 2016

Theorem

The following formula holds: $$D_q(z^n)=[n]_q z^{n-1},$$ where $D_q$ denotes the $q$-derivative and $[n]_q$ denotes the $q$-number.

Proof

References