Difference between revisions of "Q-Euler formula for e sub q"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "<div class="toccolours mw-collapsible mw-collapsed"> <strong>Theorem:</strong> The following formula holds: $$e_q(iz)=\cos_q(z)+i\sin_q(z),$$ w...")
 
 
(One intermediate revision by the same user not shown)
Line 1: Line 1:
<div class="toccolours mw-collapsible mw-collapsed">
+
==Theorem==
<strong>[[Q-Euler formula for e sub q|Theorem]]:</strong> The following formula holds:
+
The following formula holds:
 
$$e_q(iz)=\cos_q(z)+i\sin_q(z),$$
 
$$e_q(iz)=\cos_q(z)+i\sin_q(z),$$
where $e_q$ is the [[q-exponential e|$q$-exponential $e$]], $\cos_q$ is the [[q-cos|$q$-$\cos$]] function and $\sin_q$ is the [[q-sin|$q$-$\sin$]] function.
+
where $e_q$ is the [[q-exponential e sub q|$q$-exponential $e_q$]], $\cos_q$ is the [[q-cos sub q|$q$-$\cos$]] function and $\sin_q$ is the [[q-sin sub q|$q$-$\sin$]] function.
<div class="mw-collapsible-content">
+
 
<strong>Proof:</strong> █
+
==Proof==
</div>
+
 
</div>
+
==References==
 +
 
 +
[[Category:Theorem]]
 +
[[Category:Unproven]]

Latest revision as of 15:36, 11 July 2016

Theorem

The following formula holds: $$e_q(iz)=\cos_q(z)+i\sin_q(z),$$ where $e_q$ is the $q$-exponential $e_q$, $\cos_q$ is the $q$-$\cos$ function and $\sin_q$ is the $q$-$\sin$ function.

Proof

References