Difference between revisions of "Q-Euler formula for E sub q"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "<div class="toccolours mw-collapsible mw-collapsed"> <strong>Theorem:</strong> The following formula holds: $$E_q(iz)=\mathrm{Cos}_q(z)+i\mathr...")
 
 
(One intermediate revision by the same user not shown)
Line 1: Line 1:
<div class="toccolours mw-collapsible mw-collapsed">
+
==Theorem==
<strong>[[Q-Euler formula for E sub q|Theorem]]:</strong> The following formula holds:
+
The following formula holds:
 
$$E_q(iz)=\mathrm{Cos}_q(z)+i\mathrm{Sin}_q(z),$$
 
$$E_q(iz)=\mathrm{Cos}_q(z)+i\mathrm{Sin}_q(z),$$
where $E_q$ is the [[q-exponential E|$q$-exponential $E$]], $\mathrm{Cos}_q$ is the [[q-Cos|$q$-$\mathrm{Cos}$]] function and $\mathrm{Sin}_q$ is the [[q-Sin|$q$-$\mathrm{Sin}$]] function.
+
where $E_q$ is the [[q-exponential E sub q|$q$-exponential $E_q$]], $\mathrm{Cos}_q$ is the [[q-Cos|$q$-$\mathrm{Cos}$]] function and $\mathrm{Sin}_q$ is the [[q-Sin|$q$-$\mathrm{Sin}$]] function.
<div class="mw-collapsible-content">
+
 
<strong>Proof:</strong> █
+
==Proof==
</div>
+
 
</div>
+
==References==
 +
 
 +
[[Category:Theorem]]
 +
[[Category:Unproven]]

Latest revision as of 23:10, 26 June 2016

Theorem

The following formula holds: $$E_q(iz)=\mathrm{Cos}_q(z)+i\mathrm{Sin}_q(z),$$ where $E_q$ is the $q$-exponential $E_q$, $\mathrm{Cos}_q$ is the $q$-$\mathrm{Cos}$ function and $\mathrm{Sin}_q$ is the $q$-$\mathrm{Sin}$ function.

Proof

References