Difference between revisions of "Q-Euler formula for E sub q"
From specialfunctionswiki
(Created page with "<div class="toccolours mw-collapsible mw-collapsed"> <strong>Theorem:</strong> The following formula holds: $$E_q(iz)=\mathrm{Cos}_q(z)+i\mathr...") |
|||
(One intermediate revision by the same user not shown) | |||
Line 1: | Line 1: | ||
− | + | ==Theorem== | |
− | + | The following formula holds: | |
$$E_q(iz)=\mathrm{Cos}_q(z)+i\mathrm{Sin}_q(z),$$ | $$E_q(iz)=\mathrm{Cos}_q(z)+i\mathrm{Sin}_q(z),$$ | ||
− | where $E_q$ is the [[q-exponential E|$q$-exponential $ | + | where $E_q$ is the [[q-exponential E sub q|$q$-exponential $E_q$]], $\mathrm{Cos}_q$ is the [[q-Cos|$q$-$\mathrm{Cos}$]] function and $\mathrm{Sin}_q$ is the [[q-Sin|$q$-$\mathrm{Sin}$]] function. |
− | + | ||
− | + | ==Proof== | |
− | + | ||
− | + | ==References== | |
+ | |||
+ | [[Category:Theorem]] | ||
+ | [[Category:Unproven]] |
Latest revision as of 23:10, 26 June 2016
Theorem
The following formula holds: $$E_q(iz)=\mathrm{Cos}_q(z)+i\mathrm{Sin}_q(z),$$ where $E_q$ is the $q$-exponential $E_q$, $\mathrm{Cos}_q$ is the $q$-$\mathrm{Cos}$ function and $\mathrm{Sin}_q$ is the $q$-$\mathrm{Sin}$ function.