Difference between revisions of "Modified Bessel K"

From specialfunctionswiki
Jump to: navigation, search
 
(9 intermediate revisions by the same user not shown)
Line 2: Line 2:
 
$$K_{\nu}(z)=\dfrac{\pi}{2} \dfrac{I_{-\nu}(z)-I_{\nu}(z)}{\sin(\nu \pi)},$$
 
$$K_{\nu}(z)=\dfrac{\pi}{2} \dfrac{I_{-\nu}(z)-I_{\nu}(z)}{\sin(\nu \pi)},$$
 
where $I_{\nu}$ is the [[Modified Bessel I sub nu|modified Bessel function of the first kind]].
 
where $I_{\nu}$ is the [[Modified Bessel I sub nu|modified Bessel function of the first kind]].
 +
 +
<div align="center">
 +
<gallery>
 +
File:Besselk,n=0plot.png|Graph of $K_0$.
 +
File:Multiplebesselkplot.png|Graphs of $K_0$, $K_1$, $K_2$, and $K_3$.
 +
File:Domaincoloringbesselksub1.png|[[Domain coloring]] of $K_1$.
 +
File:Page 374 (Abramowitz&Stegun).jpg|Modified Bessel functions from Abramowitz&Stegun.
 +
</gallery>
 +
</div>
 +
  
 
=Properties=
 
=Properties=
<div class="toccolours mw-collapsible mw-collapsed">
+
[[Relationship between Airy Ai and modified Bessel K]]
<strong>Proposition:</strong> The following formula holds:
+
 
$$K_{\frac{1}{2}}(z)=\sqrt{\dfrac{\pi}{2}}\dfrac{e^{-z}}{\sqrt{z}}; z>0.$$
+
=References=
<div class="mw-collapsible-content">
+
[http://dualaud.net/specialfunctionswiki/abramowitz_and_stegun-1.03/page_374.htm]
<strong>Proof:</strong> █
+
 
</div>
+
[[Category:SpecialFunction]]
</div>
 
  
{{:Relationship between Airy Ai and modified Bessel K}}
+
{{:Bessel functions footer}}

Latest revision as of 23:46, 10 June 2016

The modified Bessel function of the second kind is defined by $$K_{\nu}(z)=\dfrac{\pi}{2} \dfrac{I_{-\nu}(z)-I_{\nu}(z)}{\sin(\nu \pi)},$$ where $I_{\nu}$ is the modified Bessel function of the first kind.


Properties

Relationship between Airy Ai and modified Bessel K

References

[1]

Bessel functions