Difference between revisions of "Modified Bessel I"

From specialfunctionswiki
Jump to: navigation, search
 
(21 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
The modified Bessel function of the first kind is defined by
 
The modified Bessel function of the first kind is defined by
 
$$I_{\nu}(z)=i^{-\nu}J_{\nu}(iz),$$
 
$$I_{\nu}(z)=i^{-\nu}J_{\nu}(iz),$$
where $J_{\nu}$ is the [[Bessel J sub nu|Bessel function of the first kind]].
+
where $i$ denotes the [[imaginary number]] and $J_{\nu}$ denotes the [[Bessel J|Bessel function of the first kind]].
  
 
<div align="center">
 
<div align="center">
 
<gallery>
 
<gallery>
File:Complex modified besselI sub 1.png|[[Domain coloring]] of [[analytic continuation]] of $I_1(z)$.
+
File:Besseli,n=0plot.png|Graph of $I_0$.
 +
File:Besseli,n=1plot.png|Graph of $I_1$.
 +
File:Multiplebesseliplot.png|Graph of $I_0$,$I_1$,$I_2$, and $I_3$.
 +
File:Complexbesseli,n=0plot.png|[[Domain coloring]] of $I_0$.
 +
File:Complexbesseli,n=1plot.png|[[Domain coloring]] of $I_0$.
 +
File:Page 374 (Abramowitz&Stegun).jpg|Modified Bessel functions from Abramowitz&Stegun.
 
</gallery>
 
</gallery>
 
</div>
 
</div>
  
 
=Properties=
 
=Properties=
<div class="toccolours mw-collapsible mw-collapsed">
+
[[Relationship between Bessel I sub -1/2 and cosh]]<br />
<strong>Proposition:</strong> The following formula holds:
+
[[Relationship between Bessel I sub 1/2 and sinh]]<br />
$$I_{-\frac{1}{2}}(z)=\sqrt{\dfrac{2}{\pi z}} \cosh(z).$$
+
[[Relationship between Bessel I sub n and Bessel J sub n]]<br />
<div class="mw-collapsible-content">
+
[[Relationship between Airy Bi and modified Bessel I]]<br />
<strong>Proof:</strong>
 
</div>
 
</div>
 
  
<div class="toccolours mw-collapsible mw-collapsed">
+
=References=
<strong>Proposition:</strong> The following formula holds:
 
$$I_{\frac{1}{2}}(z)=\sqrt{\dfrac{2}{\pi z}}\sinh(z).$$
 
<div class="mw-collapsible-content">
 
<strong>Proof:</strong> █
 
</div>
 
</div>
 
 
 
<div class="toccolours mw-collapsible mw-collapsed">
 
<strong>Proposition:</strong> The following formula holds:
 
$$I_{\nu}(z)=\displaystyle\sum_{k=0}^{\infty} J_{\nu+k}(z) \dfrac{z^k}{k!},$$
 
where $J_{\nu}$ denotes the [[Bessel J sub nu|Bessel function of the first kind]].
 
<div class="mw-collapsible-content">
 
<strong>Proof:</strong> █
 
</div>
 
</div>
 
  
{{:Relationship between Airy Bi and modified Bessel I}}
+
[[Category:SpecialFunction]]
  
<center>{{:Bessel functions footer}}</center>
+
{{:Bessel functions footer}}

Latest revision as of 23:53, 10 June 2016

The modified Bessel function of the first kind is defined by $$I_{\nu}(z)=i^{-\nu}J_{\nu}(iz),$$ where $i$ denotes the imaginary number and $J_{\nu}$ denotes the Bessel function of the first kind.

Properties

Relationship between Bessel I sub -1/2 and cosh
Relationship between Bessel I sub 1/2 and sinh
Relationship between Bessel I sub n and Bessel J sub n
Relationship between Airy Bi and modified Bessel I

References

Bessel functions