Difference between revisions of "Tanhc"

From specialfunctionswiki
Jump to: navigation, search
 
(3 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
The $\mathrm{tanhc}$ function is defined by
 
The $\mathrm{tanhc}$ function is defined by
 
$$\mathrm{tanhc}(z) = \dfrac{\mathrm{tanh}(z)}{z}.$$
 
$$\mathrm{tanhc}(z) = \dfrac{\mathrm{tanh}(z)}{z}.$$
 +
 +
 +
<div align="center">
 +
<gallery>
 +
File:Complex tanhc.png|[[Domain coloring]] of [[analytic continuation]] of $\mathrm{tanhc}(z)$.
 +
</gallery>
 +
</div>
  
 
=Properties=
 
=Properties=
<div class="toccolours mw-collapsible mw-collapsed">
 
<strong>Theorem:</strong> The following formula holds:
 
$$\dfrac{d}{dz} \mathrm{tanhc}(z) = \dfrac{\mathrm{sech}^2(z)}{z}-\dfrac{\mathrm{tanh(z)}}{z^2}.$$
 
<div class="mw-collapsible-content">
 
<strong>Proof:</strong> █
 
</div>
 
</div>
 
  
<center>{{:*-c functions footer}}</center>
+
{{:*-c functions footer}}
 +
 
 +
[[Category:SpecialFunction]]

Latest revision as of 23:06, 11 June 2016

The $\mathrm{tanhc}$ function is defined by $$\mathrm{tanhc}(z) = \dfrac{\mathrm{tanh}(z)}{z}.$$


Properties

$*$-c functions