Difference between revisions of "Basic hypergeometric series psi"

From specialfunctionswiki
Jump to: navigation, search
 
(3 intermediate revisions by the same user not shown)
Line 10: Line 10:
 
</div>
 
</div>
 
</div>
 
</div>
 +
 +
=See Also=
 +
[[Basic hypergeometric phi]]
 +
 +
[[Category:SpecialFunction]]

Latest revision as of 21:38, 17 June 2017

The bilateral basic hypergeometric series $\psi$ is defined by $${}_j\psi_{\ell}(a_1,\ldots,a_j;b_1,\ldots,b_k;q,z)=\displaystyle\sum_{k=-\infty}^{\infty} \dfrac{(a_1;q)_k\ldots(a_j;q)_k}{(b_1;q)_k\ldots(b_{\ell};q)_k}\left( (-1)^k q^{ {k \choose 2} } \right)^{\ell-j}z^k.$$

Properties

Theorem: The following formula holds: $${}_1\psi_1(a,b;q,z) = \dfrac{\left(\frac{b}{a};q \right)_{\infty} (q,q)_{\infty} \left( \frac{q}{az};q \right)_{\infty} (az;q)_{\infty} }{(b;q)_{\infty} \left( \frac{b}{az};q \right)_{\infty} \left( \frac{q}{a};q \right)_{\infty} (z;q)_{\infty}}.$$

Proof:

See Also

Basic hypergeometric phi