Difference between revisions of "Weierstrass nowhere differentiable function"
From specialfunctionswiki
(Created page with "The Weierstrass function is $$f(x)=\displaystyle\sum_{k=0}^{\infty} a^k \cos(b^n\pi x),$$ where $0<a<1$ and $b \in \{1,3,5,7,9,\ldots\}$ such that $ab > 1+\dfrac{3}{2}\pi$. =...") |
(→Videos) |
||
(7 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
The Weierstrass function is | The Weierstrass function is | ||
− | $$f(x)=\displaystyle\sum_{k=0}^{\infty} a^k \cos(b^ | + | $$f(x)=\displaystyle\sum_{k=0}^{\infty} a^k \cos(b^k\pi x),$$ |
where $0<a<1$ and $b \in \{1,3,5,7,9,\ldots\}$ such that $ab > 1+\dfrac{3}{2}\pi$. | where $0<a<1$ and $b \in \{1,3,5,7,9,\ldots\}$ such that $ab > 1+\dfrac{3}{2}\pi$. | ||
=Properties= | =Properties= | ||
− | + | [[Weierstrass function is continuous]]<br /> | |
− | + | [[Weierstrass function is nowhere differentiable]]<br /> | |
− | + | ||
− | + | =Videos= | |
− | + | [https://www.youtube.com/watch?v=pCEFZk9Vihs Weierstrass example (17 October 2013)]<br /> | |
− | + | ||
+ | =References= | ||
+ | [http://kryakin.org/at/hardy_1916_W.pdf] | ||
+ | |||
+ | [[Category:SpecialFunction]] |
Latest revision as of 17:54, 25 June 2017
The Weierstrass function is $$f(x)=\displaystyle\sum_{k=0}^{\infty} a^k \cos(b^k\pi x),$$ where $0<a<1$ and $b \in \{1,3,5,7,9,\ldots\}$ such that $ab > 1+\dfrac{3}{2}\pi$.
Properties
Weierstrass function is continuous
Weierstrass function is nowhere differentiable
Videos
Weierstrass example (17 October 2013)