Difference between revisions of "Weierstrass zeta"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "Let $\Lambda \subset \mathbb{C}$ be a lattice. The Weierstrass zeta function is defined by $$\zeta(z;\Lambda)=\dfrac{1}{z} + \displaystyle\sum_{w \in \Lambda \setminus \{0...")
 
 
Line 1: Line 1:
 
Let $\Lambda \subset \mathbb{C}$ be a [[lattice]]. The Weierstrass zeta function is defined by
 
Let $\Lambda \subset \mathbb{C}$ be a [[lattice]]. The Weierstrass zeta function is defined by
 
$$\zeta(z;\Lambda)=\dfrac{1}{z} + \displaystyle\sum_{w \in \Lambda \setminus \{0\}}\left( \dfrac{1}{z-w} + \dfrac{1}{w} + \dfrac{z}{w^2} \right).$$
 
$$\zeta(z;\Lambda)=\dfrac{1}{z} + \displaystyle\sum_{w \in \Lambda \setminus \{0\}}\left( \dfrac{1}{z-w} + \dfrac{1}{w} + \dfrac{z}{w^2} \right).$$
 +
 +
[[Category:SpecialFunction]]

Latest revision as of 18:51, 24 May 2016

Let $\Lambda \subset \mathbb{C}$ be a lattice. The Weierstrass zeta function is defined by $$\zeta(z;\Lambda)=\dfrac{1}{z} + \displaystyle\sum_{w \in \Lambda \setminus \{0\}}\left( \dfrac{1}{z-w} + \dfrac{1}{w} + \dfrac{z}{w^2} \right).$$