Difference between revisions of "Bohr-Mollerup theorem"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "<div class="toccolours mw-collapsible mw-collapsed" style="width:800px"> <strong>Theorem:</strong> (Bohr-Mollerup) The gamma function is the unique f...")
 
 
(2 intermediate revisions by the same user not shown)
Line 1: Line 1:
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
+
==Theorem==
<strong>[[Bohr-Mollerup theorem|Theorem]]:</strong> (Bohr-Mollerup) The gamma function is the unique function $f$ such that
+
The [[gamma function]] is the unique function $f$ such that $f(1)=1$, $f(x+1)=xf(x)$ for $x>0$, and $f$ is [[logarithmically convex]].
*$f(1)=1$
+
 
*$f(x+1)=xf(x)$ for $x>0$
+
==Proof==
*$f$ is logarithmically convex.
+
 
<div class="mw-collapsible-content">
+
==References==
<strong>Proof:</strong>  █
+
 
</div>
+
[[Category:Theorem]]
</div>
+
[[Category:Unproven]]

Latest revision as of 00:49, 1 October 2016

Theorem

The gamma function is the unique function $f$ such that $f(1)=1$, $f(x+1)=xf(x)$ for $x>0$, and $f$ is logarithmically convex.

Proof

References