Difference between revisions of "Elliptic function"

From specialfunctionswiki
Jump to: navigation, search
 
(3 intermediate revisions by the same user not shown)
Line 2: Line 2:
  
 
=Properties=
 
=Properties=
 +
[[Constant functions are elliptic functions]]<br />
 +
 +
<div class="toccolours mw-collapsible mw-collapsed">
 +
<strong>Theorem:</strong> A nonconstant [[elliptic function]] has a [[fundamental pair of periods]].
 +
<div class="mw-collapsible-content">
 +
<strong>Proof:</strong> █
 +
</div>
 +
</div>
 +
 
<div class="toccolours mw-collapsible mw-collapsed">
 
<div class="toccolours mw-collapsible mw-collapsed">
<strong>Theorem:</strong> All constant functions are elliptic functions.
+
<strong>Theorem:</strong> If an [[elliptic function]] $f$ has no [[pole|poles]] in some [[period parallelogram]], then $f$ is a constant function.
 
<div class="mw-collapsible-content">
 
<div class="mw-collapsible-content">
 
<strong>Proof:</strong> █  
 
<strong>Proof:</strong> █  
Line 10: Line 19:
  
 
<div class="toccolours mw-collapsible mw-collapsed">
 
<div class="toccolours mw-collapsible mw-collapsed">
<strong>Theorem:</strong> A nonconstant [[elliptic function]] has a [[fundamental pair of periods]].
+
<strong>Theorem:</strong> If an [[elliptic function]] $f$ has no [[zero|zeros]] in some [[period parallelogram]], then $f$ is a constant function.
 
<div class="mw-collapsible-content">
 
<div class="mw-collapsible-content">
 
<strong>Proof:</strong> █  
 
<strong>Proof:</strong> █  
Line 17: Line 26:
  
 
<div class="toccolours mw-collapsible mw-collapsed">
 
<div class="toccolours mw-collapsible mw-collapsed">
<strong>Theorem:</strong> If an [[elliptic function]] $f$ has no [[pole|poles]] in some [[period parallelogram]], then $f$ is a constant function.
+
<strong>Theorem:</strong> The [[contour integral]] of an [[elliptic function]] taken along the boundary of any [[cell]] equals zero.
 
<div class="mw-collapsible-content">
 
<div class="mw-collapsible-content">
 
<strong>Proof:</strong> █  
 
<strong>Proof:</strong> █  
Line 24: Line 33:
  
 
<div class="toccolours mw-collapsible mw-collapsed">
 
<div class="toccolours mw-collapsible mw-collapsed">
<strong>Theorem:</strong> If an [[elliptic function]] $f$ has no [[zero|zeros]] in some [[period parallelogram]], then $f$ is a constant function.
+
<strong>Theorem:</strong> The sum of the [[residue|residues]] of an [[elliptic function]] at its [[pole|poles]] in any [[period parallelogram]] equals zero.
 
<div class="mw-collapsible-content">
 
<div class="mw-collapsible-content">
 
<strong>Proof:</strong> █  
 
<strong>Proof:</strong> █  
Line 31: Line 40:
  
 
<div class="toccolours mw-collapsible mw-collapsed">
 
<div class="toccolours mw-collapsible mw-collapsed">
<strong>Theorem:</strong> The [[contour integral]] of an [[elliptic function]] taken along the boundary of any [[cell]] equals zero.
+
<strong>Theorem:</strong> The number of [[zero|zeros]] of an [[elliptic function]] in and [[period parallelogram]] equals the number of [[pole|poles]], counted with multiplicity.
 
<div class="mw-collapsible-content">
 
<div class="mw-collapsible-content">
 
<strong>Proof:</strong> █  
 
<strong>Proof:</strong> █  
 
</div>
 
</div>
 
</div>
 
</div>
 +
 +
=References=
 +
[http://dualaud.net/specialfunctionswiki/abramowitz_and_stegun-1.03/page_629.htm]<br />
 +
[http://gdz.sub.uni-goettingen.de/dms/load/img/?PID=PPN600494829_0017%7CLOG_0012 A chapter in elliptic functions - J.W.L. Glaisher]<br />

Latest revision as of 00:00, 23 December 2016

A function $f$ is called elliptic if it is a doubly periodic function and it is meromorphic.

Properties

Constant functions are elliptic functions

Theorem: A nonconstant elliptic function has a fundamental pair of periods.

Proof:

Theorem: If an elliptic function $f$ has no poles in some period parallelogram, then $f$ is a constant function.

Proof:

Theorem: If an elliptic function $f$ has no zeros in some period parallelogram, then $f$ is a constant function.

Proof:

Theorem: The contour integral of an elliptic function taken along the boundary of any cell equals zero.

Proof:

Theorem: The sum of the residues of an elliptic function at its poles in any period parallelogram equals zero.

Proof:

Theorem: The number of zeros of an elliptic function in and period parallelogram equals the number of poles, counted with multiplicity.

Proof:

References

[1]
A chapter in elliptic functions - J.W.L. Glaisher