Difference between revisions of "Spherical Bessel y"

From specialfunctionswiki
Jump to: navigation, search
 
(8 intermediate revisions by the same user not shown)
Line 1: Line 1:
 +
__NOTOC__
 
The spherical Bessel function of the second kind is
 
The spherical Bessel function of the second kind is
 
$$y_{\nu}(z)=\sqrt{\dfrac{\pi}{2z}} Y_{\nu+\frac{1}{2}}(z),$$
 
$$y_{\nu}(z)=\sqrt{\dfrac{\pi}{2z}} Y_{\nu+\frac{1}{2}}(z),$$
 
where $Y_{\nu}$ denotes the [[Bessel Y sub nu|Bessel function of the second kind]].
 
where $Y_{\nu}$ denotes the [[Bessel Y sub nu|Bessel function of the second kind]].
 +
 +
<div align="center">
 +
<gallery>
 +
File:Domcolsphericalbesselysub0.png|[[Domain coloring]] of $y_0$.
 +
</gallery>
 +
</div>
  
 
=Properties=
 
=Properties=
<div class="toccolours mw-collapsible mw-collapsed">
+
[[Relationship between spherical Bessel y and cosine]]
<strong>Theorem:</strong> The following formula holds for non-negative integers $n$:
+
 
$$y_n(z)=(-1)^{n+1}z^n \left( \dfrac{1}{z} \dfrac{d}{dz} \right)^n \left( \dfrac{\cos z}{z} \right).$$
+
=References=
<div class="mw-collapsible-content">
+
 
<strong>Proof:</strong> █
+
{{:Bessel functions footer}}
</div>
 
</div>
 
  
<center>{{:Bessel functions footer}}</center>
+
[[Category:SpecialFunction]]

Latest revision as of 01:14, 18 July 2016

The spherical Bessel function of the second kind is $$y_{\nu}(z)=\sqrt{\dfrac{\pi}{2z}} Y_{\nu+\frac{1}{2}}(z),$$ where $Y_{\nu}$ denotes the Bessel function of the second kind.

Properties

Relationship between spherical Bessel y and cosine

References

Bessel functions