Difference between revisions of "Stirling polynomial"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "The Stirling polynomials $S_k(t)$ are defined by $$S_k(t)=k! \displaystyle\sum_{j=0}^k (-1)^{k-j}\displaystyle\sum_{m=j}^k {{x+m} \choose m}{m \choose j}L_{k+m}^{(-k-j)}(-j),$...")
 
 
Line 2: Line 2:
 
$$S_k(t)=k! \displaystyle\sum_{j=0}^k (-1)^{k-j}\displaystyle\sum_{m=j}^k {{x+m} \choose m}{m \choose j}L_{k+m}^{(-k-j)}(-j),$$
 
$$S_k(t)=k! \displaystyle\sum_{j=0}^k (-1)^{k-j}\displaystyle\sum_{m=j}^k {{x+m} \choose m}{m \choose j}L_{k+m}^{(-k-j)}(-j),$$
 
where $L_{k+m}^{(-k-j)}$ denotes an [[Associated Laguerre L|associated Laguerre polynomial]].
 
where $L_{k+m}^{(-k-j)}$ denotes an [[Associated Laguerre L|associated Laguerre polynomial]].
 +
 +
[[Category:SpecialFunction]]

Latest revision as of 18:43, 24 May 2016

The Stirling polynomials $S_k(t)$ are defined by $$S_k(t)=k! \displaystyle\sum_{j=0}^k (-1)^{k-j}\displaystyle\sum_{m=j}^k {{x+m} \choose m}{m \choose j}L_{k+m}^{(-k-j)}(-j),$$ where $L_{k+m}^{(-k-j)}$ denotes an associated Laguerre polynomial.