Difference between revisions of "Relationship between Weber function and Anger function"
From specialfunctionswiki
(Created page with "<div class="toccolours mw-collapsible mw-collapsed" style="width:800px"> <strong>Theorem:</strong> The following for...") |
|||
(One intermediate revision by the same user not shown) | |||
Line 1: | Line 1: | ||
− | + | ==Theorem== | |
− | + | The following formula holds: | |
$$\sin(\nu \pi)\mathbf{E}_{\nu}(z)=\mathbf{J}_{-\nu}(z)-\cos(\nu \pi)\mathbf{J}_{\nu}(z),$$ | $$\sin(\nu \pi)\mathbf{E}_{\nu}(z)=\mathbf{J}_{-\nu}(z)-\cos(\nu \pi)\mathbf{J}_{\nu}(z),$$ | ||
where $\mathbf{E}_{\nu}$ denotes a [[Weber function]] and $\mathbf{J}_{\nu}$ denotes an [[Anger function]]. | where $\mathbf{E}_{\nu}$ denotes a [[Weber function]] and $\mathbf{J}_{\nu}$ denotes an [[Anger function]]. | ||
− | + | ||
− | + | ==Proof== | |
− | + | ||
− | + | ==References== | |
+ | * {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Relationship between Anger function and Weber function|next=Relation between Weber function and Struve function}}: 12.3.5 |
Latest revision as of 04:16, 6 June 2016
Theorem
The following formula holds: $$\sin(\nu \pi)\mathbf{E}_{\nu}(z)=\mathbf{J}_{-\nu}(z)-\cos(\nu \pi)\mathbf{J}_{\nu}(z),$$ where $\mathbf{E}_{\nu}$ denotes a Weber function and $\mathbf{J}_{\nu}$ denotes an Anger function.
Proof
References
- 1964: Milton Abramowitz and Irene A. Stegun: Handbook of mathematical functions ... (previous) ... (next): 12.3.5