Difference between revisions of "Modified Bessel K"
From specialfunctionswiki
(7 intermediate revisions by the same user not shown) | |||
Line 3: | Line 3: | ||
where $I_{\nu}$ is the [[Modified Bessel I sub nu|modified Bessel function of the first kind]]. | where $I_{\nu}$ is the [[Modified Bessel I sub nu|modified Bessel function of the first kind]]. | ||
− | + | <div align="center"> | |
− | <div | + | <gallery> |
− | < | + | File:Besselk,n=0plot.png|Graph of $K_0$. |
− | $$ | + | File:Multiplebesselkplot.png|Graphs of $K_0$, $K_1$, $K_2$, and $K_3$. |
− | + | File:Domaincoloringbesselksub1.png|[[Domain coloring]] of $K_1$. | |
− | + | File:Page 374 (Abramowitz&Stegun).jpg|Modified Bessel functions from Abramowitz&Stegun. | |
− | </ | + | </gallery> |
</div> | </div> | ||
− | |||
− | + | =Properties= | |
+ | [[Relationship between Airy Ai and modified Bessel K]] | ||
=References= | =References= | ||
[http://dualaud.net/specialfunctionswiki/abramowitz_and_stegun-1.03/page_374.htm] | [http://dualaud.net/specialfunctionswiki/abramowitz_and_stegun-1.03/page_374.htm] | ||
+ | |||
+ | [[Category:SpecialFunction]] | ||
+ | |||
+ | {{:Bessel functions footer}} |
Latest revision as of 23:46, 10 June 2016
The modified Bessel function of the second kind is defined by $$K_{\nu}(z)=\dfrac{\pi}{2} \dfrac{I_{-\nu}(z)-I_{\nu}(z)}{\sin(\nu \pi)},$$ where $I_{\nu}$ is the modified Bessel function of the first kind.
Domain coloring of $K_1$.
Properties
Relationship between Airy Ai and modified Bessel K