Difference between revisions of "Erfc"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "The complementary error function $\mathrm{erfc}$ is defined by the formula $$\mathrm{erfc}(x)=1-\mathrm{erf}(x),$$ where $\mathrm{erf}$ denotes the error function.")
 
 
(8 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
The complementary error function $\mathrm{erfc}$ is defined by the formula
 
The complementary error function $\mathrm{erfc}$ is defined by the formula
$$\mathrm{erfc}(x)=1-\mathrm{erf}(x),$$
+
$$\mathrm{erfc}(z)=1-\mathrm{erf}(z),$$
 
where $\mathrm{erf}$ denotes the [[error function]].
 
where $\mathrm{erf}$ denotes the [[error function]].
 +
 +
<div align="center">
 +
<gallery>
 +
File:Erfcplot.png|Graph of $\mathrm{erfc}$.
 +
File:Complexerfcplot.png|[[Domain coloring]] of $\mathrm{erfc}$.
 +
</gallery>
 +
</div>
 +
 +
==References==
 +
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Error function|next=findme}}: 7.1.2
 +
 +
{{:Error functions footer}}
 +
 +
[[Category:SpecialFunction]]

Latest revision as of 21:56, 6 July 2016

The complementary error function $\mathrm{erfc}$ is defined by the formula $$\mathrm{erfc}(z)=1-\mathrm{erf}(z),$$ where $\mathrm{erf}$ denotes the error function.

References

Error functions
Erfcthumb.png
Complementary $\mathrm{erf}$