Difference between revisions of "Relationship between cot and coth"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "<div class="toccolours mw-collapsible mw-collapsed"> <strong>Theorem:</strong> The following formula holds: $$\cot(z)=i\coth(iz),$$ where $\cot$ denotes the cotangent and...")
 
 
(One intermediate revision by the same user not shown)
Line 1: Line 1:
<div class="toccolours mw-collapsible mw-collapsed">
+
==Theorem==
<strong>Theorem:</strong> The following formula holds:
+
The following formula holds:
 
$$\cot(z)=i\coth(iz),$$
 
$$\cot(z)=i\coth(iz),$$
 
where $\cot$ denotes the [[cotangent]] and $\coth$ denotes the [[coth|hyperbolic cotangent]].
 
where $\cot$ denotes the [[cotangent]] and $\coth$ denotes the [[coth|hyperbolic cotangent]].
<div class="mw-collapsible-content">
+
 
<strong>Proof:</strong> █
+
==Proof==
</div>
+
 
</div>
+
==References==
 +
 
 +
[[Category:Theorem]]
 +
[[Category:Unproven]]

Latest revision as of 07:48, 8 June 2016

Theorem

The following formula holds: $$\cot(z)=i\coth(iz),$$ where $\cot$ denotes the cotangent and $\coth$ denotes the hyperbolic cotangent.

Proof

References