Difference between revisions of "Pythagorean identity for sin and cos"
From specialfunctionswiki
(Created page with "<div class="toccolours mw-collapsible mw-collapsed"> <strong>Theorem: (Pythagorean identity)</strong> The following formula holds for all $x$: $$\sin^2(x)+\cos^2(x)=1.$$ <div...") |
(→Proof) |
||
(9 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
− | + | ==Theorem== | |
− | + | The following formula holds for all $z \in \mathbb{C}$: | |
− | $$\sin^2( | + | $$\sin^2(z)+\cos^2(z)=1,$$ |
− | + | where $\sin$ denotes the [[sine]] function and $\cos$ denotes the [[cosine]] function. | |
− | + | ||
− | + | ==Proof== | |
− | + | From the definitions | |
+ | $$\sin(z)=\dfrac{e^{iz}-e^{-iz}}{2i}$$ | ||
+ | and | ||
+ | $$\cos(z)=\dfrac{e^{iz}+e^{-iz}}{2},$$ | ||
+ | using the [[square of i]] in the denominator of the first term, we see | ||
+ | $$\begin{array}{ll} | ||
+ | \sin^2(z)+\cos^2(z)&=\left( \dfrac{e^{iz}-e^{-iz}}{2i} \right)^2 + \left( \dfrac{e^{iz}+e^{-iz}}{2} \right)^2 \\ | ||
+ | &= -\dfrac{1}{4} (e^{2iz}-2+e^{-2iz})+ \dfrac{1}{4} (e^{2iz}+2+e^{-2iz}) \\ | ||
+ | &= 1, | ||
+ | \end{array}$$ | ||
+ | as was to be shown. █ | ||
+ | |||
+ | ==References== | ||
+ | |||
+ | [[Category:Theorem]] | ||
+ | [[Category:Proven]] |
Latest revision as of 18:51, 15 December 2016
Theorem
The following formula holds for all $z \in \mathbb{C}$: $$\sin^2(z)+\cos^2(z)=1,$$ where $\sin$ denotes the sine function and $\cos$ denotes the cosine function.
Proof
From the definitions $$\sin(z)=\dfrac{e^{iz}-e^{-iz}}{2i}$$ and $$\cos(z)=\dfrac{e^{iz}+e^{-iz}}{2},$$ using the square of i in the denominator of the first term, we see $$\begin{array}{ll} \sin^2(z)+\cos^2(z)&=\left( \dfrac{e^{iz}-e^{-iz}}{2i} \right)^2 + \left( \dfrac{e^{iz}+e^{-iz}}{2} \right)^2 \\ &= -\dfrac{1}{4} (e^{2iz}-2+e^{-2iz})+ \dfrac{1}{4} (e^{2iz}+2+e^{-2iz}) \\ &= 1, \end{array}$$ as was to be shown. █