Difference between revisions of "Cellérier function"
From specialfunctionswiki
(Created page with "Let $a>1000$. The Cellérier function is defined as $$C(x)=\displaystyle\sum_{k=1}^{\infty} \dfrac{1}{a^k} \sin\left(a^k x).$$ <div class="toccolours mw-collapsible mw-colla...") |
|||
(2 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
Let $a>1000$. The Cellérier function is defined as | Let $a>1000$. The Cellérier function is defined as | ||
− | $$C(x)=\displaystyle\sum_{k=1}^{\infty} \dfrac{1}{a^k} \sin\left(a^k x).$$ | + | $$C(x)=\displaystyle\sum_{k=1}^{\infty} \dfrac{1}{a^k} \sin\left(a^k x \right).$$ |
− | + | =Properties= | |
− | + | [[Cellérier function is continuous]]<br /> | |
− | + | [[Cellérier function is nowhere differentiable]]<br /> | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | </ | ||
=References= | =References= | ||
[https://pure.ltu.se/ws/files/30923977/LTU-EX-03320-SE.pdf] <br /> | [https://pure.ltu.se/ws/files/30923977/LTU-EX-03320-SE.pdf] <br /> | ||
+ | |||
+ | [[Category:SpecialFunction]] |
Latest revision as of 17:11, 23 June 2016
Let $a>1000$. The Cellérier function is defined as $$C(x)=\displaystyle\sum_{k=1}^{\infty} \dfrac{1}{a^k} \sin\left(a^k x \right).$$
Properties
Cellérier function is continuous
Cellérier function is nowhere differentiable