Difference between revisions of "Riemann function"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "The Riemann function is the function $R \colon \mathbb{R} \rightarrow \mathbb{R}$ defined by $$R(x)=\displaystyle\sum_{k=1}^{\infty} \dfrac{\sin(k^2 x)}{k^2}.$$ =Properties=...")
 
 
(5 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
The Riemann function is the function $R \colon \mathbb{R} \rightarrow \mathbb{R}$ defined by  
 
The Riemann function is the function $R \colon \mathbb{R} \rightarrow \mathbb{R}$ defined by  
 
$$R(x)=\displaystyle\sum_{k=1}^{\infty} \dfrac{\sin(k^2 x)}{k^2}.$$
 
$$R(x)=\displaystyle\sum_{k=1}^{\infty} \dfrac{\sin(k^2 x)}{k^2}.$$
 +
 +
<div align="center">
 +
<gallery>
 +
File:Riemannplot.png|Plot of $R(x)$ on $[0,1]$.
 +
File:Riemannfunction.gif|The partial sum $R(x,N)=\displaystyle\sum_{k=1}^N \dfrac{\sin(k^2 x)}{k^2}$ for various values of $N$.
 +
</gallery>
 +
</div>
  
 
=Properties=
 
=Properties=
<div class="toccolours mw-collapsible mw-collapsed">
+
[[Riemann function is continuous]]<br />
<strong>Theorem:</strong> The Riemann function is is [[continuous]].
+
[[Riemann function is almost nowhere differentiable]]<br />
<div class="mw-collapsible-content">
+
 
<strong>Proof:</strong> █
+
=References=
</div>
+
[https://pure.ltu.se/ws/files/30923977/LTU-EX-03320-SE.pdf]<br />
</div>
 
  
<div class="toccolours mw-collapsible mw-collapsed">
+
[[Category:SpecialFunction]]
<strong>Theorem:</strong> The Riemann function is [[nowhere differentiable]] except at points of the form $\pi \dfrac{2p+1}{2q+1}$ with $p,q \in \mathbb{Z}$.
 
<div class="mw-collapsible-content">
 
<strong>Proof:</strong> █
 
</div>
 
</div>
 

Latest revision as of 03:26, 6 July 2016

The Riemann function is the function $R \colon \mathbb{R} \rightarrow \mathbb{R}$ defined by $$R(x)=\displaystyle\sum_{k=1}^{\infty} \dfrac{\sin(k^2 x)}{k^2}.$$

Properties

Riemann function is continuous
Riemann function is almost nowhere differentiable

References

[1]