Difference between revisions of "Falling factorial"
From specialfunctionswiki
(Created page with "The falling factorial $x^{\underline{k}}$ for nonnegative integer $k$ is given by $$x^{\underline{k}}=x(x-1)\ldots (x-k+1).$$") |
|||
(2 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
− | The falling factorial $x^{\underline{k}}$ for | + | The falling factorial $x^{\underline{k}}$ for positive [[integer]] $k$ is given by |
$$x^{\underline{k}}=x(x-1)\ldots (x-k+1).$$ | $$x^{\underline{k}}=x(x-1)\ldots (x-k+1).$$ | ||
+ | If $k$ is not an integer, we use the following formula to interpret $x^{\underline{k}}$: | ||
+ | $$x^{\underline{k}} = \dfrac{\Gamma(x+1)}{\Gamma(x-k+1)},$$ | ||
+ | where $\Gamma$ denotes the [[gamma function]]. | ||
+ | |||
+ | =Properties= | ||
+ | |||
+ | =References= | ||
+ | |||
+ | [[Category:SpecialFunction]] |
Latest revision as of 12:27, 11 August 2016
The falling factorial $x^{\underline{k}}$ for positive integer $k$ is given by $$x^{\underline{k}}=x(x-1)\ldots (x-k+1).$$ If $k$ is not an integer, we use the following formula to interpret $x^{\underline{k}}$: $$x^{\underline{k}} = \dfrac{\Gamma(x+1)}{\Gamma(x-k+1)},$$ where $\Gamma$ denotes the gamma function.