Difference between revisions of "Porter's constant"
From specialfunctionswiki
(Created page with "Porter's constant $C$ is given by $$C=\dfrac{6\log(2)}{\pi^2} \left[ 3 \log(2)+4 \gamma - \dfrac{24}{\pi^2} \zeta'(2)-2 \right]-\dfrac{1}{2},$$ where $\log$ denotes the loga...") |
|||
Line 2: | Line 2: | ||
$$C=\dfrac{6\log(2)}{\pi^2} \left[ 3 \log(2)+4 \gamma - \dfrac{24}{\pi^2} \zeta'(2)-2 \right]-\dfrac{1}{2},$$ | $$C=\dfrac{6\log(2)}{\pi^2} \left[ 3 \log(2)+4 \gamma - \dfrac{24}{\pi^2} \zeta'(2)-2 \right]-\dfrac{1}{2},$$ | ||
where $\log$ denotes the [[logarithm]], $\pi$ denotes [[pi]], $\gamma$ denotes the [[Euler-Mascheroni constant]], and $\zeta$ denotes the [[Riemann zeta]] function. | where $\log$ denotes the [[logarithm]], $\pi$ denotes [[pi]], $\gamma$ denotes the [[Euler-Mascheroni constant]], and $\zeta$ denotes the [[Riemann zeta]] function. | ||
+ | |||
+ | [[Category:SpecialFunction]] |
Latest revision as of 19:00, 24 May 2016
Porter's constant $C$ is given by $$C=\dfrac{6\log(2)}{\pi^2} \left[ 3 \log(2)+4 \gamma - \dfrac{24}{\pi^2} \zeta'(2)-2 \right]-\dfrac{1}{2},$$ where $\log$ denotes the logarithm, $\pi$ denotes pi, $\gamma$ denotes the Euler-Mascheroni constant, and $\zeta$ denotes the Riemann zeta function.