Difference between revisions of "Arcsec"

From specialfunctionswiki
Jump to: navigation, search
(Properties)
 
(4 intermediate revisions by the same user not shown)
Line 1: Line 1:
 +
The [[function]] $\mathrm{arcsec} \colon \mathbb{R} \setminus (-1,1) \rightarrow [0,\pi] \setminus \left\{ \dfrac{\pi}{2} \right\}$ is the [[inverse function]] of the [[secant]] function.
 
<div align="center">
 
<div align="center">
 
<gallery>
 
<gallery>
 +
File:Arcsecplot.png|Graph of $\mathrm{arcsec}$.
 
File:Complexarcsecplot.png|[[Domain coloring]] of $\mathrm{arcsec}$.
 
File:Complexarcsecplot.png|[[Domain coloring]] of $\mathrm{arcsec}$.
 
</gallery>
 
</gallery>
Line 6: Line 8:
  
 
=Properties=
 
=Properties=
{{:Derivative of arcsec}}
+
[[Derivative of arcsec]]
  
 
=See Also=
 
=See Also=
Line 13: Line 15:
 
[[Arcsech]]  
 
[[Arcsech]]  
  
<center>{{:Inverse trigonometric functions footer}}</center>
+
{{:Inverse trigonometric functions footer}}
 +
 
 +
[[Category:SpecialFunction]]

Latest revision as of 03:44, 6 July 2016

The function $\mathrm{arcsec} \colon \mathbb{R} \setminus (-1,1) \rightarrow [0,\pi] \setminus \left\{ \dfrac{\pi}{2} \right\}$ is the inverse function of the secant function.

Properties

Derivative of arcsec

See Also

Secant
Sech
Arcsech

Inverse trigonometric functions