Difference between revisions of "Relationship between arcsin and arccsc"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "<div class="toccolours mw-collapsible mw-collapsed"> <strong>Theorem:</strong> The following formula holds: $$\mathrm{arcsin}(z) = \...")
 
 
(One intermediate revision by the same user not shown)
Line 1: Line 1:
<div class="toccolours mw-collapsible mw-collapsed">
+
==Theorem==
<strong>[[Relationship between arcsin and arccsc|Theorem]]:</strong> The following formula holds:
+
The following formula holds:
 
$$\mathrm{arcsin}(z) = \mathrm{arccsc}\left( \dfrac{1}{z} \right),$$
 
$$\mathrm{arcsin}(z) = \mathrm{arccsc}\left( \dfrac{1}{z} \right),$$
 
where $\mathrm{arcsin}$ denotes the [[arcsin|inverse sine]] function and $\mathrm{arccsc}$ denotes the [[arccsc|inverse cosecant]] function.
 
where $\mathrm{arcsin}$ denotes the [[arcsin|inverse sine]] function and $\mathrm{arccsc}$ denotes the [[arccsc|inverse cosecant]] function.
<div class="mw-collapsible-content">
+
 
<strong>Proof:</strong> █
+
==Proof==
</div>
+
 
</div>
+
==References==
 +
 
 +
[[Category:Theorem]]
 +
[[Category:Unproven]]

Latest revision as of 07:28, 8 June 2016

Theorem

The following formula holds: $$\mathrm{arcsin}(z) = \mathrm{arccsc}\left( \dfrac{1}{z} \right),$$ where $\mathrm{arcsin}$ denotes the inverse sine function and $\mathrm{arccsc}$ denotes the inverse cosecant function.

Proof

References