Difference between revisions of "Arctan"

From specialfunctionswiki
Jump to: navigation, search
 
(6 intermediate revisions by the same user not shown)
Line 1: Line 1:
 +
__NOTOC__
 
The $\mathrm{arctan}$ function is the inverse function of the [[tangent]] function.<br />
 
The $\mathrm{arctan}$ function is the inverse function of the [[tangent]] function.<br />
  
Line 9: Line 10:
  
 
=Properties=
 
=Properties=
{{:Derivative of arctan}}
+
[[Derivative of arctan]]<br />
{{:Antiderivative of arctan}}
+
[[Antiderivative of arctan]]<br />
 
+
[[Relationship between arctan and arccot]]<br />
<div class="toccolours mw-collapsible mw-collapsed">
+
[[2F1(1/2,1;3/2;-z^2)=arctan(z)/z]]<br />
<strong>Proposition:</strong>  
 
$\mathrm{arctan}(z) = \mathrm{arccot}\left( \dfrac{1}{z} \right)$
 
<div class="mw-collapsible-content">
 
<strong>Proof:</strong> █
 
</div>
 
</div>
 
 
 
{{:Relationship between arctan and hypergeometric 2F1}}
 
  
 
=References=
 
=References=
Line 30: Line 23:
 
[[Arctanh]]  
 
[[Arctanh]]  
  
<center>{{:Inverse trigonometric functions footer}}</center>
+
{{:Inverse trigonometric functions footer}}
 +
 
 +
[[Category:SpecialFunction]]

Latest revision as of 02:46, 16 September 2016

The $\mathrm{arctan}$ function is the inverse function of the tangent function.

Properties

Derivative of arctan
Antiderivative of arctan
Relationship between arctan and arccot
2F1(1/2,1;3/2;-z^2)=arctan(z)/z

References

Weisstein, Eric W. "Inverse Tangent." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/InverseTangent.html

See Also

Tangent
Tanh
Arctanh

Inverse trigonometric functions